tlc.client.reduce.pacmap
#
Dimensionality reduction with the PaCMAP algorithm.
Module Contents#
Classes#
Class |
Description |
---|---|
Arguments specific to the PaCMAP reduction method. |
|
Perform dimensionality reduction on columns of tables using the PaCMAP algorithm. |
API#
- class tlc.client.reduce.pacmap.PaCMAPTableArgs#
Bases:
tlc.client.reduce.reduction_method.ReducerArgs
Arguments specific to the PaCMAP reduction method.
See
PaCMAPTable
for more information.Initialize self. See help(type(self)) for accurate signature.
- n_neighbors: int = None#
The number of neighbors to use when constructing the nearest neighbor graph (default to 10 for dataset whose sample size is smaller than 10000. For large dataset whose sample size (n) is larger than 10000, the default value is: 10 + 15 * (log10(n) - 4))
- MN_ratio: float = None#
the ratio of the number of mid-near pairs to the number of neighbors (default 0.5)
- FP_ratio: float = None#
the ratio of the number of further pairs to the number of neighbors, (default 2)
- distance: str = None#
The distance metric to use for the nearest neighbor graph (default ‘euclidean’)
- num_iters: int = None#
Number of iterations. Default 450. 450 iterations is enough for most dataset to converge.
- apply_pca: bool = None#
Whether pacmap should apply PCA to the data before constructing the k-Nearest Neighbor graph (default True)
- source_embedding_column: str | None = None#
The name of the column containing the embedding in the input table. If None, all columns are considered.
- class tlc.client.reduce.pacmap.PaCMAPReduction(reducer_args: tlc.client.reduce.reduction_method._ReducerArgsType | None = None)#
Bases:
tlc.client.reduce.reduction_method.ReductionMethod
[tlc.client.reduce.pacmap.PaCMAPTableArgs
]Perform dimensionality reduction on columns of tables using the PaCMAP algorithm.
- Params reducer_args:
A dictionary of arguments which are specific to the reduction method.
- default_args() tlc.client.reduce.pacmap.PaCMAPTableArgs #
Returns the default arguments for the PaCMAP reduction method.
- fit_and_apply_reduction(producer: tlc.core.objects.table.Table, consumers: list[tlc.core.objects.table.Table]) dict[tlc.core.url.Url, tlc.core.url.Url] #
- fit_reduction_method(table: tlc.core.objects.table.Table, column: str) tlc.core.url.Url #
Fits a PaCMAPTable and returns the model URL
- apply_reduction_method(table: tlc.core.objects.table.Table, fit_table_url: tlc.core.url.Url, column: str) tlc.core.url.Url | None #