Fine-tuning a model with the 🤗 TLC Trainer API#
This notebook demonstrates how to use our hugging face TLC Trainer API and finetuning a model called bert-base-uncased
[2]:
PROJECT_NAME = "bert-base-uncased"
RUN_NAME = "finetuning-run"
DESCRIPTION = "Fine-tuning BERT on MRPC"
TRAIN_DATASET_NAME = "hugging-face-train"
VAL_DATASET_NAME = "hugging-face-val"
CHECKPOINT = "bert-base-uncased"
DEVICE = "cuda:0"
TRAIN_BATCH_SIZE = 64
EVAL_BATCH_SIZE = 256
EPOCHS = 4
OPTIMIZER = "adamw_torch"
TRANSIENT_DATA_PATH = "../transient_data"
TLC_PUBLIC_EXAMPLES_DEVELOPER_MODE = True
INSTALL_DEPENDENCIES = False
[4]:
%%capture
if INSTALL_DEPENDENCIES:
%pip --quiet install torch --index-url https://download.pytorch.org/whl/cu118
%pip --quiet install torchvision --index-url https://download.pytorch.org/whl/cu118
%pip --quiet install datasets transformers evaluate
%pip --quiet install accelerate
%pip --quiet install scikit-learn
%pip --quiet install tlc
[7]:
import os
import datasets
import evaluate
import numpy as np
import tlc
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, TrainingArguments
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true" # Removing BertTokenizerFast tokenizer warning
datasets.utils.logging.disable_progress_bar()
Initialize a 3LC Run#
We initialize a Run with a call to tlc.init
, and add the configuration to the Run object.
[8]:
With the 3LC integration, you can use tlc.Table.from_hugging_face()
as a drop-in replacement for datasets.load_dataset()
to create a tlc.Table
. Notice .latest()
, which gets the latest version of the 3LC dataset.
[9]:
tlc_train_dataset = tlc.Table.from_hugging_face(
"glue",
"mrpc",
split="train",
project_name=PROJECT_NAME,
dataset_name=TRAIN_DATASET_NAME,
if_exists="overwrite",
).latest()
tlc_val_dataset = tlc.Table.from_hugging_face(
"glue",
"mrpc",
split="validation",
project_name=PROJECT_NAME,
dataset_name=VAL_DATASET_NAME,
if_exists="overwrite",
).latest()
Table
provides a method map
to apply both preprocessing and on-the-fly transforms to your data before it is sent to the model.
It is different from huggingface where it generates a new reference of the data directly including the example
[10]:
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
def tokenize_function_tlc(example):
return {**example, **tokenizer(example["sentence1"], example["sentence2"], truncation=True)}
tlc_tokenized_dataset_train = tlc_train_dataset.map(tokenize_function_tlc)
tlc_tokenized_dataset_val = tlc_val_dataset.map(tokenize_function_tlc)
/home/build/ado/w/1/huggingface-finetuning_venv/lib/python3.9/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
warnings.warn(
[11]:
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
Here we define our model with two labels
[12]:
# For demonstration purposes, we use the bert-base-uncased model with a different set of labels than
# it was trained on. As a result, there will be a warning about the inconsistency of the classifier and
# pre_classifier weights. This is expected and can be ignored.
model = AutoModelForSequenceClassification.from_pretrained(CHECKPOINT, num_labels=2)
Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Setup Metrics Collection#
Computing metrics is done by implementing a function which returns per-sample metrics you would like to see in the 3LC Dashboard.
This is different from the original compute_metrics of Huggingface which compute per batch the metrics. Here we want to find results with a granularity of per sample basis.
[13]:
def compute_tlc_metrics(logits, labels):
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predictions = logits.argmax(dim=-1)
loss = torch.nn.functional.cross_entropy(logits, labels, reduction="none")
confidence = probabilities.gather(dim=-1, index=predictions.unsqueeze(-1)).squeeze()
return {
"predicted": predictions,
"loss": loss,
"confidence": confidence,
}
id2label = {0: "not_equivalent", 1: "equivalent"}
schemas = {
"predicted": tlc.CategoricalLabelSchema(
display_name="Predicted Label", class_names=id2label.values(), display_importance=4005
),
"loss": tlc.Schema(display_name="Loss", writable=False, value=tlc.Float32Value()),
"confidence": tlc.Schema(display_name="Confidence", writable=False, value=tlc.Float32Value()),
}
compute_tlc_metrics.column_schemas = schemas
[14]:
# Add references to the input datasets used by the Run.
run.add_input_table(tlc_train_dataset)
run.add_input_table(tlc_val_dataset)
Train the model with TLCTrainer#
To perform model training, we replace the usual Trainer
with TLCTrainer
and provide the per-sample metrics collection function.
In this example, we still compute the glue MRPC per batch thanks to the compute_hf_metrics method (compute_metrics is changed to compute_hf_metrics to avoid confusion).
We also compute our special per sample tlc metrics thanks to the compute_tlc_metrics method.
With this latter, we can choose when to start to collect the metrics, here at epoch 2 (indexed from 0 with tlc_metrics_collection_start) with a frequency of 1 epoch (with tlc_metrics_collection_epoch_frequency).
You also can switch the strategy to compute the metrics to “steps” in the evaluation_strategy and specify the frequency with eval_steps. At this stage, if you use tlc_metrics_collection_start, it should be a multiple of eval_steps. Note that tlc_metrics_collection_epoch_frequency is disable in this case because we use the original eval_steps variable.
We also specify that we would like to collect metrics prior to training with compute_tlc_metrics_on_train_begin.
[15]:
from tlc.integration.hugging_face import TLCTrainer
def compute_metrics(eval_preds):
metric = evaluate.load("glue", "mrpc")
logits, labels = eval_preds
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
training_args = TrainingArguments(
output_dir=TRANSIENT_DATA_PATH,
per_device_train_batch_size=TRAIN_BATCH_SIZE,
per_device_eval_batch_size=EVAL_BATCH_SIZE,
optim=OPTIMIZER,
num_train_epochs=EPOCHS,
report_to="none", # Disable wandb logging
no_cuda=(DEVICE == "cpu"),
evaluation_strategy="epoch",
disable_tqdm=True,
# evaluation_strategy="steps", # For running metrics on steps
# eval_steps=20, # For running metrics on steps
)
trainer = TLCTrainer(
model=model,
args=training_args,
train_dataset=tlc_tokenized_dataset_train,
eval_dataset=tlc_tokenized_dataset_val,
tokenizer=tokenizer,
data_collator=data_collator,
compute_hf_metrics=compute_metrics,
compute_tlc_metrics=compute_tlc_metrics,
compute_tlc_metrics_on_train_begin=True,
compute_tlc_metrics_on_train_end=False,
tlc_metrics_collection_start=2,
tlc_metrics_collection_epoch_frequency=1,
)
/home/build/ado/w/1/huggingface-finetuning_venv/lib/python3.9/site-packages/transformers/training_args.py:1474: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
warnings.warn(
[16]:
trainer.train()
{'eval_loss': 0.6377372741699219, 'eval_accuracy': 0.6747546346782988, 'eval_f1': 0.8057319654779352, 'eval_runtime': 16.6816, 'eval_samples_per_second': 219.883, 'eval_steps_per_second': 0.899}
{'eval_loss': 0.6342514753341675, 'eval_accuracy': 0.6838235294117647, 'eval_f1': 0.8122270742358079, 'eval_runtime': 1.6963, 'eval_samples_per_second': 240.524, 'eval_steps_per_second': 1.179}
{'eval_loss': 0.3897748589515686, 'eval_accuracy': 0.8235294117647058, 'eval_f1': 0.8705035971223022, 'eval_runtime': 1.7466, 'eval_samples_per_second': 233.597, 'eval_steps_per_second': 1.145, 'epoch': 1.0}
{'eval_loss': 0.3837583065032959, 'eval_accuracy': 0.8357843137254902, 'eval_f1': 0.8896210873146623, 'eval_runtime': 1.7422, 'eval_samples_per_second': 234.182, 'eval_steps_per_second': 1.148, 'epoch': 2.0}
{'eval_loss': 0.057882245630025864, 'eval_accuracy': 0.9877317339149401, 'eval_f1': 0.9908998988877654, 'eval_runtime': 16.4297, 'eval_samples_per_second': 223.255, 'eval_steps_per_second': 0.913, 'epoch': 3.0}
{'eval_loss': 0.3654559254646301, 'eval_accuracy': 0.8700980392156863, 'eval_f1': 0.9068541300527241, 'eval_runtime': 1.7717, 'eval_samples_per_second': 230.286, 'eval_steps_per_second': 1.129, 'epoch': 3.0}
{'eval_loss': 0.03915698453783989, 'eval_accuracy': 0.9915485278080698, 'eval_f1': 0.9937436932391523, 'eval_runtime': 16.4149, 'eval_samples_per_second': 223.455, 'eval_steps_per_second': 0.914, 'epoch': 4.0}
{'eval_loss': 0.4445335268974304, 'eval_accuracy': 0.8627450980392157, 'eval_f1': 0.9027777777777778, 'eval_runtime': 1.7689, 'eval_samples_per_second': 230.65, 'eval_steps_per_second': 1.131, 'epoch': 4.0}
{'train_runtime': 218.12, 'train_samples_per_second': 67.266, 'train_steps_per_second': 1.064, 'train_loss': 0.26278132405774346, 'epoch': 4.0}
[16]:
TrainOutput(global_step=232, training_loss=0.26278132405774346, metrics={'train_runtime': 218.12, 'train_samples_per_second': 67.266, 'train_steps_per_second': 1.064, 'train_loss': 0.26278132405774346, 'epoch': 4.0})