tlc.client.torch.metrics.metrics_collectors.segmentation_metrics_collector
#
Collect metrics for segmentation problems.
Module Contents#
Classes#
Class |
Description |
---|---|
Collect predicted masks from model output. |
Data#
Data |
Description |
---|---|
API#
- tlc.client.torch.metrics.metrics_collectors.segmentation_metrics_collector.PREDICTED_MASK_METRIC_NAME = predicted_mask#
- class tlc.client.torch.metrics.metrics_collectors.segmentation_metrics_collector.SegmentationMetricsCollector(label_map: dict[int, str], preprocess_fn: Callable[[tlc.core.builtins.types.SampleData, tlc.client.torch.metrics.predictor.PredictorOutput], tuple[Any, Any]] | None = None)#
Bases:
tlc.client.torch.metrics.metrics_collectors.metrics_collector_base.MetricsCollector
Collect predicted masks from model output.
Predicted masks are converted to PIL images, which can be written to the Run folder by a
MetricsTableWriter
.Initialize the SegmentationMetricsCollector.
- Parameters:
label_map – A dictionary mapping class ids to class labels.
preprocess_fn – A function that pre-processes the model output before computing metrics.
- compute_metrics(batch: tlc.core.builtins.types.SampleData, predictor_output: tlc.client.torch.metrics.predictor.PredictorOutput) dict[str, tlc.core.builtins.types.MetricData] #
Convert predicted masks from model output to PIL images.
The result of preprocessing the model output is expected to be a list of tensors.
- Parameters:
batch – The input batch (not used).
predictor_output – The output from the Predictor.
- Returns:
A batch of metrics, where each metric is a PIL image corresponding to a mask.
- preprocess(batch: tlc.core.builtins.types.SampleData, predictor_output: tlc.client.torch.metrics.predictor.PredictorOutput) tuple[tlc.core.builtins.types.SampleData, torch.Tensor] #
Default preprocessor for segmentation output.
By default just forwards the model predictions.
- Parameters:
batch – A batch of samples.
predictor_output – A batch of predictions.
- Returns:
A tuple containing the preprocessed batch and predictions.
- tensor_to_pil_image(predicted_mask: torch.Tensor) PIL.Image.Image #
- property column_schemas: dict[str, tlc.core.schema.Schema]#