tlc.core.objects.tables.from_table.pacmap_table
#
A Table where a column from the input Table has been dimensionally reduced by the PaCMAP algorithm.
Module Contents#
Classes#
Class |
Description |
---|---|
A procedural table where a column in the input table column has been has dimensionally reduced by the PaCMAP algorithm. |
Data#
Data |
Description |
---|---|
API#
- tlc.core.objects.tables.from_table.pacmap_table.pacmap = _lazy_import(...)#
- class tlc.core.objects.tables.from_table.pacmap_table.PaCMAPTable(url: tlc.core.url.Url | None = None, created: str | None = None, description: str | None = None, row_cache_url: tlc.core.url.Url | None = None, row_cache_populated: bool | None = None, input_table_url: tlc.core.url.Url | tlc.core.objects.table.Table | None = None, source_embedding_column: str | None = None, target_embedding_column: str | None = None, retain_source_embedding_column: bool | None = None, fit_table_url: tlc.core.objects.table.Table | tlc.core.url.Url | None = None, model_url: tlc.core.url.Url | None = None, n_components: int | None = None, n_neighbors: int | None = None, MN_ratio: float | None = None, FP_ratio: float | None = None, distance: str | None = None, lr: float | None = None, num_iters: int | None = None, verbose: bool | None = None, apply_pca: bool | None = None, random_state: int | None = None, init_parameters: Any = None, standard_scaler_normalize: bool | None = None, input_tables: list[tlc.core.url.Url] | None = None)#
Bases:
tlc.core.objects.tables.from_table.dimensional_reduction_table._DimensionalReductionTable
A procedural table where a column in the input table column has been has dimensionally reduced by the PaCMAP algorithm.
Creates a derived table with a new column containing the dimensionally reduced data.
- Parameters:
input_table_url – The input table to apply the dimensionality reduction to
source_embedding_column – The column in the input table to apply dimensionality reduction to
target_embedding_column – The name of the new column to create in the output table
retain_source_embedding_column – Whether to retain the source column in the input table, defaults to False
standard_scaler_normalize – Whether to apply the sklearn standard scaler to input before reducing, defaults to False
fit_table_url – The table to use for fitting reduction transform. If not specified, the input table is used.
model_url – The URL to store/load the reducer model file. If empty, no model is saved.
n_components – The dimension of the output embedding
random_state – The random seed for the reducer algorithm
- algorithm_name = PaCMAP#