tlc.core.schema

Defines Schema, which is a class for describing atomic or (possibly nested) composite structures

Module Contents

Classes

Class

Description

MapElement

Defines a single item in a value map.

ScalarValue

Describes a scalar value in a schema

BoolValue

Describes a scalar boolean value

NumericValue

Describes a scalar numeric value

Float32Value

A numeric value with type ‘float32’

Float64Value

A numeric value with type ‘float64’

Uint8Value

A numeric value with type ‘uint8’

Int8Value

A numeric value with type ‘int8’

Uint16Value

A numeric value with type ‘uint16’

Int16Value

A numeric value with type ‘int16’

Uint32Value

A numeric value with type ‘uint32’

Int32Value

A numeric value with type ‘int32’

Uint64Value

A numeric value with type ‘uint64’

Int64Value

A numeric value with type ‘int64’

TimestampValue

A timestamp value counting the number of ‘unit’s since epoch

DimensionNumericValue

Describes a scalar numeric value which is a dimension size within a property

StringValue

Describes a string value

UrlStringValue

Describes a generic URL string value

ImageUrlStringValue

Describes a Image URL string value

SegmentationUrlStringValue

Describes a Segmentation URL string value

SegmentationMaskUrlStringValue

Describes a Segmentation Mask URL string value

DatetimeStringValue

Describes a date-time string value

ObjectTypeStringValue

A string containing an object type

FolderUrlStringValue

Describes a generic URL string value

TensorUrlStringValue

Describes a URL string value pointing to a tensor

DictValue

Describes a value which consists of an anonymous, free-form dictionary

Schema

A schema is a recursive structure which defines the layout of an object. It defines what elements the object consists of, which must be either

NoneSchema

A schema that encodes a None value

API

class tlc.core.schema.MapElement(internal_name: str = '', display_name: str = '', description: str = '', display_color: str = '', url: str = '')

Bases: dict

Defines a single item in a value map.

Initialize self. See help(type(self)) for accurate signature.

property internal_name: str
property display_name: str
property description: str
property display_color: str
property url: str
to_minimal_dict(include_all: bool) dict[str, Any]

Add a minimal representation of this object to a dictionary for subsequent serialization to JSON

static from_any(any_map_element: Any) tlc.core.schema.MapElement

Creates a MapElement object and populates it from an anonymous, possibly sparse object

class tlc.core.schema.ScalarValue(value_type: str = _DEFAULT_SCALAR_VALUE_TYPE, default_value: Any = None)

Describes a scalar value in a schema

to_minimal_dict(include_all: bool) dict[str, Any]

Add a minimal representation of this object to a dictionary for subsequent serialization to JSON

static from_any(any_value: Any) tlc.core.schema.ScalarValue

Create and populate a ScalarValue (or one of the derived classes) given an anonymous, potentially sparse object

static from_value(value: Any) tlc.core.schema.ScalarValue

Create a scalar value from a Python value.

Parameters:

value – The value to create a ScalarValue from

Returns:

A ScalarValue (or one it the derived classes) representing the value

property default_value: Any
class tlc.core.schema.BoolValue(default_value: bool | None = None)

Bases: tlc.core.schema.ScalarValue

Describes a scalar boolean value

static from_any(any_value: Any) tlc.core.schema.BoolValue

Create and populate a BoolValue object given an anonymous, potentially sparse object

class tlc.core.schema.NumericValue(value_type: str = _DEFAULT_SCALAR_VALUE_TYPE, value_min: float | int | None = None, value_max: float | int | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | float | None = None)

Bases: tlc.core.schema.ScalarValue

Describes a scalar numeric value

to_minimal_dict(include_all: bool) dict[str, Any]

Add a minimal representation of this object to a dictionary for subsequent serialization to JSON

static from_any(any_value: Any) tlc.core.schema.NumericValue

Create and populate a NumericValue object given an anonymous, potentially sparse object

static from_value(value: Any) tlc.core.schema.NumericValue

Create a numeric value from a Python value.

Parameters:

value – The value to create a NumericValue from

Returns:

A NumericValue (or one it the derived classes) representing the value

class tlc.core.schema.Float32Value(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: float | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘float32’

class tlc.core.schema.Float64Value(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: float | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘float64’

class tlc.core.schema.Uint8Value(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘uint8’

class tlc.core.schema.Int8Value(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘int8’

class tlc.core.schema.Uint16Value(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘uint16’

class tlc.core.schema.Int16Value(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘int16’

class tlc.core.schema.Uint32Value(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘uint32’

class tlc.core.schema.Int32Value(value_min: int | None = None, value_max: int | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘int32’

class tlc.core.schema.Uint64Value(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘uint64’

class tlc.core.schema.Int64Value(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | None = None)

Bases: tlc.core.schema.NumericValue

A numeric value with type ‘int64’

class tlc.core.schema.TimestampValue(value_min: float | None = None, value_max: float | None = None, enforce_min: bool = False, enforce_max: bool = False, value_step: float = 0, number_role: str = NUMBER_ROLE_TIMESTAMP, unit: str = 'ms', value_map: dict[float, tlc.core.schema.MapElement] | None = None, default_value: int | None = None)

Bases: tlc.core.schema.Int64Value

A timestamp value counting the number of ‘unit’s since epoch

Stores the value as an ‘int64’

Defaults to milliseconds resolution

class tlc.core.schema.DimensionNumericValue(value_min: int = 0, value_max: int | None = None, enforce_min: bool = True, enforce_max: bool = False, display_name: str = '', description: str = '', number_role: str = '', unit: str = '', value_map: dict[float, tlc.core.schema.MapElement] | None = None, sample_type: str = '', default_value: int | None = None)

Bases: tlc.core.schema.Int32Value

Describes a scalar numeric value which is a dimension size within a property

classmethod fixed_size(size: int) tlc.core.schema.DimensionNumericValue

Create a fixed size dimension value

to_minimal_dict(include_all: bool) dict[str, Any]

Add a minimal representation of this object to a dictionary for subsequent serialization to JSON

static dimension_numeric_value_from_any(this_property: Any) tlc.core.schema.DimensionNumericValue | None

Creates a DimensionNumericValue object and populates it from an anonymous, possibly sparse object

is_fixed_size() bool
class tlc.core.schema.StringValue(string_role: str = '', default_value: str | None = None)

Bases: tlc.core.schema.ScalarValue

Describes a string value

to_minimal_dict(include_all: bool) dict[str, Any]

Add a minimal representation of this object to a dictionary for subsequent serialization to JSON

static from_any(any_value: Any) tlc.core.schema.StringValue

Create and populate a StringValue object given an anonymous, potentially sparse object

class tlc.core.schema.UrlStringValue(url_string_icon: str = '', default_value: str | None = None)

Bases: tlc.core.schema.StringValue

Describes a generic URL string value

class tlc.core.schema.ImageUrlStringValue(default_value: str | None = None)

Bases: tlc.core.schema.UrlStringValue

Describes a Image URL string value

class tlc.core.schema.SegmentationUrlStringValue(default_value: str | None = None, map: dict[float, tlc.core.schema.MapElement] | dict[float, str] | None = None)

Bases: tlc.core.schema.UrlStringValue

Describes a Segmentation URL string value

to_minimal_dict(include_all: bool) dict[str, Any]
static from_any(any_value: Any) tlc.core.schema.SegmentationUrlStringValue

Create and populate a SegmentationUrlStringValue object given an anonymous, potentially sparse object

class tlc.core.schema.SegmentationMaskUrlStringValue(default_value: str | None = None, map: dict[float, tlc.core.schema.MapElement] | dict[float, str] | None = None)

Bases: tlc.core.schema.SegmentationUrlStringValue

Describes a Segmentation Mask URL string value

static from_any(any_value: Any) tlc.core.schema.SegmentationMaskUrlStringValue

Create and populate a SegmentationMaskUrlStringValue object given an anonymous, potentially sparse object

class tlc.core.schema.DatetimeStringValue(default_value: str | None = None)

Bases: tlc.core.schema.StringValue

Describes a date-time string value

class tlc.core.schema.ObjectTypeStringValue(default_value: str | None = None)

Bases: tlc.core.schema.StringValue

A string containing an object type

class tlc.core.schema.FolderUrlStringValue(default_value: str | None = None)

Bases: tlc.core.schema.StringValue

Describes a generic URL string value

class tlc.core.schema.TensorUrlStringValue(default_value: str | None = None)

Bases: tlc.core.schema.UrlStringValue

Describes a URL string value pointing to a tensor

class tlc.core.schema.DictValue(default_value: dict = {})

Bases: tlc.core.schema.ScalarValue

Describes a value which consists of an anonymous, free-form dictionary

static from_any(_: Any) tlc.core.schema.DictValue
property default_value: dict
class tlc.core.schema.Schema(display_name: str = '', description: str = '', writable: bool = True, display_importance: float = 0, value: tlc.core.schema.ScalarValue | None = None, values: dict[str, tlc.core.schema.Schema] | None = None, composite_role: str = '', display_color: str = '', swap_group: str = '', computable: bool = True, sample_type: str = '', transient: bool = False, default_visible: bool = True, size0: tlc.core.schema.DimensionNumericValue | None = None, size1: tlc.core.schema.DimensionNumericValue | None = None, size2: tlc.core.schema.DimensionNumericValue | None = None, size3: tlc.core.schema.DimensionNumericValue | None = None, size4: tlc.core.schema.DimensionNumericValue | None = None, size5: tlc.core.schema.DimensionNumericValue | None = None)

A schema is a recursive structure which defines the layout of an object. It defines what elements the object consists of, which must be either

  • Atomic type (with optional metadata, e.g. value range, unit, etc.) OR

  • Composite contents (a list of schemas describing the sub-object)

In addition, it defines HOW MANY of these scalar or composite elements exist, in the form of up to six-dimensions which can each be described separately and be of fixed or variable lengths. The default size of dimensions is 1, describing a scalar value.

Schemas are used for

  • Defining the layout of Objects (as reported by e.g. “MyObject.schema”)

  • In the case of Tables: defining the common layout of all table rows (as reported by e.g “MyTableObject.schema.values[“rows”])

In the case where a schema defines a “top-level” object, it will always have a ‘values’ attribute (since it is always a composite object, and does not comprise only a single atomic value).

is_empty() bool
last_dimension() tlc.core.schema.DimensionNumericValue | None

Return the last (outermost) dimension of the Schema

to_minimal_dict(include_all: bool) dict[str, Any]

Add a minimal representation of this object to a dictionary for subsequent serialization to JSON

add_sub_schema(name: str, schema: tlc.core.schema.Schema) None

Adds a Schema as a sub-property within this Schema (i.e. into the ‘values’ collection)

add_sub_value(name: str, value: tlc.core.schema.ScalarValue, writable: bool = True, computable: bool = True) None

Adds a scalar value as a sub-property within this Schema (i.e. into the ‘values’ collection)

to_json() str

Writes the contents of this schema to a JSON string. Note that

  • Defaults values are omitted for brevity

  • Schemas might be recursive

static from_any(any_object: Any) tlc.core.schema.Schema

Returns a Schema object which has been populated from a serialized (possibly sparse) object

static from_json(json_string: str) tlc.core.schema.Schema

Returns a Schema object which has been populated from a JSON string

consider_override_from(override_schema: tlc.core.schema.Schema | collections.abc.Mapping[str, object] | None) tlc.core.schema.Schema

Selectively overwrites columns within this Schema according to the columns defined in another Schema.

does_object_match(_object: Any) bool

Checks whether a schema matches an example object.

This requires exact 1:1 mapping between attributes in the object and the schema (including recursively). This means no attributes can be missing, nor can there be any additional attributes only present in the object.

is_fixed_size() bool

Return whether the schema has fixed size.

This requires all dimensions to be fixed size.

is_scalar() bool

Return whether the schema is a scalar value

Sizes are required to be set in increasing dimensions without gaps and no size is treated like a scalar.

is_atomic() bool

Return whether the schema is atomic, i.e. has a single value.

The opposite of is_composite.

Returns:

Whether the schema is atomic

is_composite() bool

Return whether the schema is composite, i.e. has multiple values.

The opposite of is_atomic.

Returns:

Whether the schema is composite

property sample_type_object: tlc.client.sample_type.SampleType
row_from_sample(sample: Any) dict[str, Any]
sample_from_row(row: collections.abc.Mapping[str, object]) Any
classmethod from_structure(structure: tlc.client.sample_type._SampleTypeStructure) tlc.core.schema.Schema

Creates a schema from a structure.

Parameters:

structure – The structure to create a schema from

Returns:

The schema

classmethod from_sample(sample: Any) tlc.core.schema.Schema

Creates a schema describing the provided sample.

Parameters:

sample – The sample to create a schema from

Returns:

The schema

push_dim(dim: tlc.core.schema.DimensionNumericValue | None = None) tlc.core.schema.DimensionNumericValue | None

Inserts dim as size0 and shifts all other dimensions right. (size1 becomes size0, size2 becomes size1).

Parameters:

dim – The dimension to insert as size0

Returns:

The old size5

pop_dim() tlc.core.schema.DimensionNumericValue | None

Sets size5 to None and shifts all other dimensions left. (size5 becomes size4, size4 becomes size3, etc.).

Returns:

The old size0

add_sample_weight(hidden: bool = True, default_value: float = 1.0) None

Adds a sample weight column to the schema.

Parameters:

hidden – Whether the column should be hidden

class tlc.core.schema.NoneSchema

Bases: tlc.core.schema.Schema

A schema that encodes a None value

It is not a valid Schema as it has neither value nor values. It is used to encode override schemas that remove sub schemas.

Example:

override_schema = { "values": { "column_to_remove": None }}
# or equivalently
override_schema = { "values": { "column_to_remove": NoneSchema()}}
to_json() str
to_minimal_dict(include_all: bool) dict[str, Any]