tlc.core.objects.tables.from_table.umap_table
¶
A Table where a column from the input Table has been dimensionally reduced by the UMAP algorithm.
Module Contents¶
Classes¶
Class |
Description |
---|---|
A procedural table where a column in the input table column has been has dimensionally reduced by the UMAP algorithm. |
Data¶
Data |
Description |
---|---|
API¶
- umap = _lazy_import(...)¶
- class UMAPTable(
- *,
- url: Url | None = None,
- created: str | None = None,
- description: str | None = None,
- row_cache_url: Url | None = None,
- row_cache_populated: bool | None = None,
- input_table_url: Url | Table | None = None,
- source_embedding_column: str | None = None,
- target_embedding_column: str | None = None,
- retain_source_embedding_column: bool | None = None,
- standard_scaler_normalize: bool | None = None,
- n_components: int | None = None,
- n_neighbors: int | None = None,
- metric: str | None = None,
- min_dist: float | None = None,
- n_jobs: int | None = None,
- fit_table_url: Table | Url | None = None,
- model_url: Url | None = None,
- init_parameters: Any = None,
- random_state: int | None = None,
- input_tables: list[Url] | None = None,
Bases:
tlc.core.objects.tables.from_table.dimensional_reduction_table._DimensionalReductionTable
A procedural table where a column in the input table column has been has dimensionally reduced by the UMAP algorithm.
Creates a derived table with an (additional) UMAP-ed column based on input column and wanted dimensionality.
- Parameters:
input_table_url – The input table to apply UMAP to
source_embedding_column – The column in the input table to apply UMAP to
target_embedding_column – The name of the new column to create in the output table
retain_source_embedding_column – Whether to retain the source column in the UMAP table, defaults to False
standard_scaler_normalize – Whether to apply the sklearn standard scaler to input before mapping, defaults to False
n_components – The dimension of the output embedding
n_neighbors – The number of neighbors to use to approximate the manifold structure
metric – The metric to use to compute distances in high dimensional space
min_dist – The minimum distance between points in the low dimensional embedding
n_jobs – The number of threads to use for the reduction. If set to anything other than 1, the random_state parameter of the UMAP algorithm is set to None, which means that the results will not be deterministic.
fit_table_url – The table to use for fitting the UMAP transform, if not specified the input table is used
model_url – The URL to store/load the UMAP model file. If empty, no model is saved.
random_state – The random state to use for the reduction
- algorithm_name = UMAP¶