tlc.client.torch.metrics.metrics_collectors.functional_metrics_collector
#
Collect metrics using a custom function.
Module Contents#
Classes#
Class |
Description |
---|---|
A metrics collector which uses a function to collect metrics. |
API#
- class tlc.client.torch.metrics.metrics_collectors.functional_metrics_collector.FunctionalMetricsCollector(collection_fn: Callable[[tlc.core.builtins.types.SampleData, tlc.client.torch.metrics.predictor.PredictorOutput], dict[str, Any]], column_schemas: dict[str, tlc.core.schema.Schema] | None = None, compute_aggregates: bool = True)#
Bases:
tlc.client.torch.metrics.metrics_collectors.metrics_collector_base.MetricsCollector
A metrics collector which uses a function to collect metrics.
Create a new functional metrics collector.
- Parameters:
collection_fn – A function for computing custom metrics. The function should take two arguments: a batch of samples, and an instance of
PredictorOutput
. It should return a dictionary of computed metrics, mapping the names of the metrics to a batch of their values. A trivialcollection_fn
might look like this:
def collection_fn(batch, predictor_output): return {"prediction": predictor_output.forward}
- Parameters:
column_schemas – A dictionary of schemas for the columns. If no schemas are provided, the schemas will be inferred from the column data.
- compute_metrics(batch: tlc.core.builtins.types.SampleData, predictor_output: tlc.client.torch.metrics.predictor.PredictorOutput) dict[str, Any] #
- property column_schemas: dict[str, tlc.core.schema.Schema]#