tlc.client.torch.metrics.metrics_collectors.functional_metrics_collector
¶
Collect metrics using a custom function.
Module Contents¶
Classes¶
Class |
Description |
---|---|
A metrics collector which uses a function to collect metrics. |
API¶
- class FunctionalMetricsCollector(
- collection_fn: Callable[[tlc.core.builtins.types.SampleData, PredictorOutput], dict[str, Any]],
- column_schemas: dict[str, Schema] | None = None,
- compute_aggregates: bool = True,
Bases:
tlc.client.torch.metrics.metrics_collectors.metrics_collector_base.MetricsCollector
A metrics collector which uses a function to collect metrics.
Create a new functional metrics collector.
- Parameters:
collection_fn – A function for computing custom metrics. The function should take two arguments: a batch of samples, and an instance of
PredictorOutput
. It should return a dictionary of computed metrics, mapping the names of the metrics to a batch of their values. A trivialcollection_fn
might look like this:
def collection_fn(batch, predictor_output): return {"prediction": predictor_output.forward}
- Parameters:
column_schemas – A dictionary of schemas for the columns. If no schemas are provided, the schemas will be inferred from the column data.
- compute_metrics(
- batch: tlc.core.builtins.types.SampleData,
- predictor_output: PredictorOutput,