How to create a Table#

A Table is a collection of samples belonging to a dataset. It is the fundamental data structure in 3LC. Tables are used as a means to translate and share data between the Dashboard and the Python package.

There are many ways to create a Table. We have a number of utility functions for common dataset formats like PyTorch, ImageFolder, COCO, YOLO, and Pandas. You can also use a TableWriter to write a Table from an arbitrary format.

Common formats#

Image folder structure#

If your dataset is in a folder structure as illustrated below, you can use the Table.from_image_folder method.

Images-folder/
    ├── class1/
    │     ├── image1.jpg
    │     ├── image2.jpg
    │     └── ...
    └── class2/
          ├── image1.jpg
          ├── image2.jpg
          └── ...
import tlc

data_path = "/path/to/images/folder"

table = tlc.Table.from_image_folder(
    root = data_path,
    table_name = "my_table",
    dataset_name = "my_dataset",
    project_name = "my_project"
)

Torchvision formatted datasets#

If your dataset is a PyTorch Dataset, you can use the Table.from_torch_dataset() method.

import tlc
import torchvision

train_dataset = torchvision.datasets.CIFAR10(root=TRANSIENT_DATA_PATH, train=True, download=True)
val_dataset = torchvision.datasets.CIFAR10(root=TRANSIENT_DATA_PATH, train=False)

class_names = train_dataset.classes

structure = (
    tlc.PILImage("image"),
    tlc.CategoricalLabel("label", classes=class_names),
)

train_table = tlc.Table.from_torch_dataset(
    dataset = train_dataset,
    dataset_name = "train-set",
    table_name = "original",
    project_name = "Cifar-10",
    description = "CIFAR-10 training dataset",
    structure = structure,
    if_exists = "overwrite",
)

val_table = tlc.Table.from_torch_dataset(
    dataset = val_dataset,
    dataset_name = "val-set",
    table_name = "original",
    project_name = "Cifar-10",
    description = "CIFAR-10 validation dataset",
    structure = structure,
    if_exists = "overwrite",
)

COCO datasets#

If your dataset is in the COCO format, you can use the Table.from_coco method.

import tlc

IMAGE_PATH = "/path/to/image/folder"
ANNOTATION_PATH = "/path/to/annotation/json/file"

table = tlc.Table.from_coco(
    annotations_file = ANNOTATION_PATH,
    image_folder = IMAGE_PATH,
    table_name = "original",
    dataset_name = "my_dataset",
    project_name = "my_project",
)

YOLO datasets#

If your dataset is in YOLO format, you can use the Table.from_yolo method.

import tlc

YAML_PATH = "/path/to/data.yaml"

table = tlc.Table.from_yolo(
    dataset_yaml_file = YAML_PATH,
    split = "train",
    table_name = "original",
    dataset_name = "my_dataset",
    project_name = "my_project",
)

Pandas dataframe#

If you have a Pandas dataframe dataset, you can use the Table.from_pandas method.

import pandas as pd
import tlc

df = pd.read_csv("path/to/data.csv")

table = tlc.Table.from_pandas(
    df, 
    table_name="original", 
    dataset_name="my_dataset", 
    project_name="my_project",
)

Custom format#

If your dataset is not in any of the common formats, you can create a Table from scratch using a TableWriter.

import tlc

class_names = [] # list of classes
image_path_list = [] # list of image paths (absolute paths)
label_list = [] # list of labels (same length as image_path_list)

table_writer = tlc.TableWriter(
    project_name = "My Project",
    dataset_name = "My Dataset",
    table_name = "My Table",
    column_schemas = {"image":tlc.ImagePath("image"), 
        "label":tlc.CategoricalLabel("label", classes=class_names), 
        "weight":tlc.SampleWeightSchema()
    }
)

# you can add data row by row 
for image_path, label_name in zip(image_path_list, label_list):
    label = class_names.index(label_name)
    table_writer.add_row({"image": image_path, "label": label, "weight": 1.0})

# or you can add data in batch 
label_index_list = [class_names.index(label_name) for label_name in label_list]
weight_list = [1.0] * len(image_path_list)
table_writer.add_batch({"image": image_path_list, "label": label_index_list, "weight": weight_list})

# finalize the table
table = table_writer.finalize()

For writing a free-style Table for bounding box object detection datasets, please refer to the public example notebook in https://github.com/3lc-ai/3lc-examples/blob/main/tutorials/write-bb-table.ipynb.

Special cases#

Detectron2#

When using 3LC’s Detectron2 integration, you can use the register_coco_instances method to create a Table for COCO datasets, instead of Table.from_coco().

from tlc.integration.detectron2 import register_coco_instances
from detectron2.data import MetadataCatalog, DatasetCatalog

json_file_path = "path/to/json/file"
image_folder_path = "path/to/image/folder"
DATASET_NAME = "my_dataset"

register_coco_instances(
    name = DATASET_NAME,
    project_name = "my_project",
    json_file = json_file_path,
    image_root = image_folder_path,
)

dataset_metadata = MetadataCatalog.get(DATASET_NAME)
dataset_dicts = DatasetCatalog.get(DATASET_NAME)

Ultralytics YOLO#

If you are using our Ultralytics YOLO integration to run training, Tables will be automatically created when calling TLCYOLO.train.

from ultralytics.utils.tlc.detect.model import TLCYOLO
from ultralytics.utils.tlc.detect.settings import Settings

# Set 3LC specific settings
settings = Settings(
    project_name="my_project",
    run_name="my_run"
)

YAML_FILE_PATH = "path/to/yaml/file"
model = TLCYOLO("yolo11.pt")
model.train(data=YAML_FILE_PATH, settings=settings, epochs=20)