tlc.core.schema_helper
#
Helper methods for working with Schemas
Module Contents#
Classes#
Class |
Description |
---|---|
A class with helper methods for working with Schema objects |
API#
- class tlc.core.schema_helper.SchemaHelper#
A class with helper methods for working with Schema objects
- ARROW_TYPE_TO_SCALAR_VALUE_MAPPING: ClassVar = None#
A mapping from PyArrow types to ScalarValue types.
- SCALAR_VALUE_TYPE_TO_ARROW_TYPE_MAPPING: ClassVar = None#
A mapping from ScalarValue types to PyArrow types.
- static object_input_urls(obj: Any, schema: tlc.core.schema.Schema) list[tlc.core.url.Url] #
Returns a list of all URLs referenced by this object, from scalar strings or lists of strings
Note: the result is likely to be relative with respect to the object’s URL
- static from_pyarrow_datatype(data_type: pyarrow.DataType) tlc.core.schema.ScalarValue | None #
Converts a DataType to a ScalarValue.
- Parameters:
data_type – The pyarrow DataType object to convert.
- Returns:
The type of the scalar value that corresponds to the pyarrow DataType.
- static scalar_value_to_pyarrow_datatype(value: tlc.core.schema.ScalarValue) pyarrow.DataType #
Converts a ScalarValue to a pyarrow DataType.
- Parameters:
value – The scalar value to convert.
- Returns:
The corresponding pyarrow datatype.
- static to_pyarrow_datatype(schema_or_value: tlc.core.schema.Schema | tlc.core.schema.ScalarValue) pyarrow.DataType #
Converts a Schema or ScalarValue to a pyarrow DataType.
Currently supports scalar types, lists of scalar types, structs, and lists of structs.
- Parameters:
schema_or_value – The schema or scalar value to convert.
- Returns:
The corresponding pyarrow datatype.
- static tlc_schema_to_pyarrow_schema(tlc_schema: tlc.core.schema.Schema) pyarrow.Schema #
Convert a 3LC schema to a PyArrow schema.
- Parameters:
tlc_schema – The 3LC schema to convert.
- Returns:
The PyArrow schema.
- static find_pyarrow_types(arrow_schema: pyarrow.Schema, scalar_types: list[pyarrow.DataType]) list[dict[str, object]] #
Find all the paths in an Arrow schema that correspond to scalar types.
- static pyarrow_list_to_tlc_schema(list_type: pyarrow.ListType | pyarrow.FixedSizeListType, **schema_kwargs: Any) tlc.core.schema.Schema #
- static pyarrow_schema_to_tlc_schema(arrow_schema: pyarrow.Schema, **schema_kwargs: Any) tlc.core.schema.Schema #
Convert a PyArrow schema to a 3LC schema.
- Parameters:
arrow_schema – The PyArrow schema to convert.
schema_kwargs – Additional keyword arguments to pass to the Schema constructor.
- Returns:
The 3LC schema.
- static cast_scalar(value: Any, value_type: tlc.core.schema.ScalarValue) Any #
Cast a value which is a ScalarValue into its corresponding python type.
- static cast_value(value: typing.Any, value_schema: tlc.core.schema.Schema, on_error: typing.Literal[raise, discard] = 'raise') Any #
Cast any value into its corresponding python type based on the Schema.
- static default_scalar(value_type: tlc.core.schema.ScalarValue) Any #
Returns the default value for a ScalarValue.
- static default_value(schema: tlc.core.schema.Schema) Any #
Returns the default value for a schema.
A schema holds either:
a ScalarValue (schema.value) which corresponds to a scalar type (potentially an array of scalars)
a dict of sub-Schemas (schema.values) corresponding compound types (potentially an array)
- static is_computable(schema: tlc.core.schema.Schema) bool #
Returns True if the schema is computable.
- static add_schema_to_existing_schema_at_location(added_schema: tlc.core.schema.Schema, existing_schema: tlc.core.schema.Schema, location: list[str]) None #
Adds the value to the schema at the given location.
- static is_pseudo_scalar(schema: tlc.core.schema.Schema) bool #
Returns True if the schema is a pseudo-scalar.
When a schema has a size0 with min=1 and max=1, it is considered a pseudo-scalar. This is a trick we use when unrolling/rolling up tables. We want to treat table cells with 1-element lists as scalars.
- static get_nested_schema(schema: tlc.core.schema.Schema, path: str) tlc.core.schema.Schema | None #
Retrieves a nested schema from a schema.
- Parameters:
schema – The schema to retrieve the nested schema from.
path – The (dot-separated) path to the nested schema.
- Returns:
The nested schema, or None if the path doesn’t exist.
- static create_sparse_schema_from_scalar_value(path: str, scalar_value: tlc.core.schema.ScalarValue) tlc.core.schema.Schema #
Creates a sparse schema from a path and a schema.
- Parameters:
path – The (dot-separated) path to the nested schema.
new_schema – The schema to create the sparse schema from.
- Returns:
The sparse schema.
- static create_sparse_schema_from_schema(path: str, schema: tlc.core.schema.Schema) tlc.core.schema.Schema #
Creates a sparse schema from a path and a schema.
- Parameters:
path – The (dot-separated) path to the nested schema.
new_schema – The schema to create the sparse schema from.
- Returns:
The sparse schema.
- static top_level_url_values(schema: tlc.core.schema.Schema) list[str] #
Return a list of sub-schemas that represent atomic URL values.
This function does not return the keys of nested URL values.
- Parameters:
schema – The schema to retrieve the URL values from.
- Returns:
A list of sub-value keys corresponding to URL values.
- static nested_url_columns(schema: tlc.core.schema.Schema, column_path_to_here: list[str] | None = None) list[list[str]] #
Get columns from the schema that have string roles URL/X. Each column is represented as a list of strings, with subsequent strings denoting nested columns.
- Parameters:
schema – The schema to retrieve the URL columns from.
column_path_to_here – The path to the current schema.
- static is_embedding_value(schema: tlc.core.schema.Schema) bool #
Returns True if the schema is an atomic schema describing an unreduced embedding value.
- static is_numeric_value(schema: tlc.core.schema.Schema) bool #
Returns True if the schema is an atomic schema describing a numeric value.