tlc.integration.super_gradients.callbacks.detection_callback

Callback for collecting predictions from SuperGradients detection models.

Module Contents

Classes

API

class DetectionMetricsCollectionCallback(
project_name: str | None = None,
run_name: str | None = None,
run_description: str | None = None,
image_column_name: str = 'image',
label_column_name: str | None = None,
metrics_collection_epochs: list[int] | None = None,
collect_metrics_on_train_end: bool = True,
collect_val_only: bool = False,
batch_size: int | None = 32,
pipeline_params: PipelineParams | dict[str, Any] | None = None,
collect_predictions: bool | None = None,
collect_embeddings: bool = False,
embeddings_dim: int = 2,
embeddings_method: Literal[pacmap, umap] = 'pacmap',
inference_chunk_size: int = 5000,
)

Bases: tlc.integration.super_gradients.callbacks.base_callback.MetricsCollectionCallback

property label_column_name: str
compute_metrics(
images: list[str],
predictions: super_gradients.training.utils.predict.prediction_results.ImagesDetectionPrediction | super_gradients.training.utils.predict.prediction_results.ImageDetectionPrediction,
table: Table,
) dict[str, Any]

Compute metrics from a batch of data and corresponding predictions.

metrics_column_schemas(
table: Table,
) dict[str, Schema]

Return the column schemas for the metrics of this callback.