View source
Download
.ipynb
Train a YOLO segmentation model with 3LC metrics collection¶
This notebook shows how to train a YOLO segmentation model with 3LC metrics collection on a YOLO-compatible 3LC Table.

Install dependencies¶
[ ]:
%pip install "3lc[pacmap]"
%pip install 3lc-ultralytics
Imports¶
[ ]:
import tlc
from tlc_ultralytics import YOLO, Settings
Project setup¶
[ ]:
PROJECT_NAME = "3LC Tutorials - Cell Segmentation"
DATASET_NAME = "Sartorius Cell Segmentation"
# Modify YOLO training parameters when training on your own data
MODEL_NAME = "yolo11n-seg.pt"
EPOCHS = 10
BATCH_SIZE = 4
DOWNLOAD_PATH = "../../transient_data"
NUM_WORKERS = 8 # Multiple workers in notebook environment is not supported on Windows
[ ]:
train_table = tlc.Table.from_names("train", DATASET_NAME, PROJECT_NAME)
val_table = tlc.Table.from_names("val", DATASET_NAME, PROJECT_NAME)
[ ]:
model = YOLO(MODEL_NAME)
settings = Settings(
project_name=PROJECT_NAME,
run_name="Train YOLO Instance Segmentation Model",
conf_thres=0.2,
sampling_weights=True,
exclude_zero_weight_training=True,
exclude_zero_weight_collection=False,
image_embeddings_dim=2,
)
results = model.train(
task="segment",
tables={
"train": train_table,
"val": val_table,
},
settings=settings,
batch=BATCH_SIZE,
epochs=EPOCHS,
workers=NUM_WORKERS,
project=DOWNLOAD_PATH,
)
[ ]:
print(f"Run created at {results.run_url}")