tlc.client.reduce.umap¶

Dimensionality reduction with the UMAP algorithm.

Module Contents¶

Classes¶

Class

Description

UMapReduction

Perform dimensionality reduction on columns of tables using the UMAP algorithm.

UMapTableArgs

Arguments specific to the UMAP reduction method.

API¶

class UMapReduction(
reducer_args: tlc.client.reduce.reduction_method._ReducerArgsType | None = None,
)¶

Bases: tlc.client.reduce.reduction_method.ReductionMethod[tlc.client.reduce.umap.UMapTableArgs]

Perform dimensionality reduction on columns of tables using the UMAP algorithm.

Params reducer_args:

A dictionary of arguments which are specific to the reduction method.

apply_reduction_method(
table: Table,
fit_table_url: Url,
column: str,
) Url | None¶
default_args() UMapTableArgs¶

Returns the default arguments for the UMAP reduction method.

fit_reduction_method(
table: Table,
column: str,
) Url¶

Fits a UMAPTable and returns the model URL

class UMapTableArgs¶

Bases: tlc.client.reduce.reduction_method.ReducerArgs

Arguments specific to the UMAP reduction method.

See UMAPTable for more information.

Initialize self. See help(type(self)) for accurate signature.

metric: str = None¶

The metric to use when calculating distances between points in the input space (default: euclidean).

min_dist: float = None¶

The minimum distance between points in the reduced space (default 0.1).

n_components: int = None¶

The number of dimensions in the reduced space (default 2).

n_jobs: int = None¶

The number of threads to use for the reduction (default -1).

n_neighbors: int = None¶

The number of neighbors to use when constructing the nearest neighbor graph (default 15).

standard_scaler_normalize: bool = None¶

Whether to normalize the data before reducing it (default False).