View source
Download
.ipynb
Create Table from YOLO Instance Segmentation¶
Create a 3LC Table from YOLO-format dataset with polygon-based instance segmentation annotations for modern object detection pipelines.

YOLO format is widely used in modern computer vision pipelines due to its simplicity and efficiency. The polygon-based segmentation format provides precise boundaries while maintaining fast inference speeds.
This notebook loads a YOLO-format segmentation dataset and converts it to a 3LC Table. We process both image files and corresponding text annotation files containing normalized polygon coordinates for each instance.
Project setup¶
[ ]:
PROJECT_NAME = "3LC Tutorials - YOLO Segmentation"
DATASET_NAME = "YOLO-Seg-Dataset"
TABLE_NAME = "initial-segmentation"
DATA_PATH = "../../../data"
Install dependencies¶
[ ]:
%pip install 3lc
Imports¶
Create Segmentation Table¶
[ ]:
dataset_yaml_file = (Path(DATA_PATH) / "yolo" / "simple.yaml").absolute()
assert dataset_yaml_file.exists()
train_table = tlc.Table.from_yolo(
dataset_yaml_file=str(dataset_yaml_file),
split="train",
project_name=PROJECT_NAME,
dataset_name=DATASET_NAME,
table_name=TABLE_NAME,
task="segment",
)