View source
Download
.ipynb
Collect and reduce classifier embeddings¶
In this tutorial, we will use an existing classifier model to generate per-instance embeddings for a COCO-style object detection dataset. We will then reduce these embeddings to 3D using PaCMAP.

To run this notebook, you must also have run:
Install dependencies¶
[ ]:
%pip install -q 3lc[pacmap]
%pip install -q git+https://github.com/3lc-ai/3lc-examples.git
%pip install -q timm
Imports¶
[ ]:
import tlc
from tlc_tools.augment_bbs.extend_table_with_metrics import extend_table_with_metrics
Project setup¶
[ ]:
PROJECT_NAME = "3LC Tutorials - COCO128"
TMP_PATH = "../../../transient_data"
MODEL_NAME = "efficientnet_b0"
BATCH_SIZE = 32
NUM_COMPONENTS = 3
[ ]:
MODEL_CHECKPOINT = TMP_PATH + "/instance_classifier.pth"
Get input Table¶
[ ]:
# Open the Table used in the previous notebook
input_table = tlc.Table.from_names(
table_name="initial-segmentation",
dataset_name="COCO128",
project_name=PROJECT_NAME,
)
Collect embeddings and metrics from pre-trained model¶
[ ]:
output_table_url, pacmap_reducer, fit_embeddings = extend_table_with_metrics(
input_table=input_table,
output_table_name="extended",
add_embeddings=True,
add_image_metrics=True,
model_name=MODEL_NAME,
model_checkpoint=MODEL_CHECKPOINT,
batch_size=BATCH_SIZE,
num_components=NUM_COMPONENTS,
)
[ ]:
output_table_url